Welcome to the Research England Engagement Forum
Millennium Gloucester Hotel, London
Thursday 26 September 2019

WIFI username: Research England
Password: UKRI_2019
<table>
<thead>
<tr>
<th>Time</th>
<th>Session</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00 – 10:10</td>
<td>Welcome from Professor Naren Barfield, Research England Council member, and Deputy Vice-Chancellor and Provost of the Royal College of Art</td>
</tr>
<tr>
<td>10:10 – 10:30</td>
<td>Video message from Chris Skidmore, Minister of State for Universities, Science, Research and Innovation</td>
</tr>
<tr>
<td>10:30 – 11:10</td>
<td>International keynote address from Professor Fassmann, University of Vienna</td>
</tr>
<tr>
<td>11:10 – 11:30</td>
<td>Q&A session</td>
</tr>
<tr>
<td>11:30 – 11:45</td>
<td>Refreshment break</td>
</tr>
<tr>
<td>11:45 – 12:15</td>
<td>Key themes arising from UKRI's 2.4% workshops by Helen Cross, Head of Strategy Coordination, UKRI</td>
</tr>
<tr>
<td>12:15 – 12:30</td>
<td>Q&A session</td>
</tr>
<tr>
<td>12:30 – 13:30</td>
<td>Lunch</td>
</tr>
<tr>
<td>13:30 – 14:30</td>
<td>Policy panel discussion, responding to a sample of the questions pre-collected during the morning break</td>
</tr>
<tr>
<td>14:30 – 14:35</td>
<td>Delegates to move to the Conservatory for the Marketplace</td>
</tr>
<tr>
<td>14:35 – 15:30</td>
<td>Marketplace</td>
</tr>
<tr>
<td>15:30 – 15:45</td>
<td>Summing up and final questions and comments from the floor by David Sweeney</td>
</tr>
<tr>
<td>15:45</td>
<td>Close</td>
</tr>
</tbody>
</table>

#REEngage19
Welcome and opening remarks

Speaker:
Professor Naren Barfield
Research England Council member
Deputy Vice-Chancellor and Provost of the Royal College of Art
• Welcome and thank you
• Focus – 2.4% GDP
• Key note address from Chris Skidmore, Minister of State for Universities, Science, Research and Innovation
• Key note address from Professor Heinz Fassmann, University of Vienna
• Interactive policy panel discussion – submit questions via www.menti.com (code 83 23 5)
• New - Market Place
Purpose of the day

• Uncertainty
• Challenges and opportunities
• Risk
• Preparedness
• Relationships
• Success
• Flexibility
• Support
Video message

Chris Skidmore
Minister of State for Universities, Science, Research and Innovation

#REEngage19
Any questions for the policy panel discussion can be submitted via www.menti.com
Type in code: 83 23 5

The deadline for submitting a question is at **12:30pm**
Science, Research, and Tertiary Education

What can we learn from the Austrian experience?

Prof. Heinz Fassmann

University of Vienna/former Minister of Education, Science and Research
Content
• UK government’s target is to increase expenditure on research and development to the equivalent of 2.4% of the GDP. Austria’s R&D expenditures are 3.2%. How do we explain the difference?

• I will offer an overview concerning
 • public and private universities
 • funding agencies
 • the money involved and
 • my recipe for a successful R&D policy
1. Institutions
The institutional setting of science and research in Austria is complicated. There are

- 3 responsible ministries
- 2 funding agencies (basic research and applied research)
- 57 universities (public universities, private universities, universities of applied sciences)
- 2 large research institutions outside universities
- 1 important applied research institute
- Many programmes, centres and joint activities
Universities

Academy of Sciences, Institute for Science and Technology

Applied research institutes (AIT)

Joint centres - Universities and firms (Comet, CDG)

Industrial Research

Research-driven education

Publications

Patents, Licenses, IPR

Spin-Offs

Competitive products
2 Funding Agencies

1. Austrian Science Fund (FWF)
 - funding of basic research to generate new insights and to expand and advance scholarly knowledge
 - Annual budget: ~ 200 mio. €
 - Main instruments:
 - stand-alone projects of researchers of any discipline who are working in Austria
 - Special Research Programmes (SFBs) for a core group of five to fifteen internationally outstanding researchers from all scientific/scholarly disciplines
 - Equivalent to the German DFG or the Swiss SNF
 • funding of applied as well as industrial research; FFG funding schemes play an important role in generating new knowledge and developing new products and services
 • Annual budget: ~ 400 mio. €
 • Main instruments:
 • 135 (!) different programmes with thematic foci including NANO Environment Health and Safety, Quantum Technology, Mobility of the Future, ERA-Net, Austrian Space Applications Programme (ASAP)
 • Equivalent to the German Frauenhofer Institutes
1. Public Universities
 - 22 public universities in Austria (1 per 400,000 inhabitants);
 - they provide an excellent education from archaeology to zoology
 - 280,000 students are enrolled (39% of the age group 18-24); of them
 - 67% are Austrian citizens, 22% non-Austrian EU citizens and 11% third-country nationals
 - Legal status: public universities
 - are independent legal entities under public law
 - enjoy (full) autonomy in terms of study programmes, human resources, and internal disposition of public funding, but no “price” autonomy
 - are financed mainly through the state budget; the private contribution (fees) is small
• Relation to the Ministry of Education, Science and Research
 - Strong; Every third year negotiations with the Rectorate about new study programmes, research activities, and specific strategic measurements (e.g. third mission)
 - Negotiations lead to a Performance Agreement for a three year period. Main content: the overall and guaranteed budget; the university is free to decide in detail
 - Legal Supervision

• Examples of Public Universities ➔
Founded in 1365
Largest university in Austria with 92,000 students and 9,600 employees
Offers 178 degree programmes (around 20% of them are taught in English)
Ranking:
Times Higher Education 2019: 143
Shanghai Ranking 2018: 151-200
Famous Nobel laureates include Julius Wagner-Jauregg, Karl Landsteiner, Erwin Schrödinger, Viktor Franz Hess, Konrad Lorenz, and Friedrich August von Hayek
• Founded in 1811 (oldest technical university in Austria)
• Excellent technical university; practises close cooperation with the automobile industry
• 17,000 students and 120 professors
• 59 degree programmes (16 master's programmes in English)
• Ranking:
 Times Higher Rankings 2019: 401-500; Shanghai Ranking 2018 - Computer Science & Engineering: 76-100
• 5 Fields of expertise: Advanced Materials Science, Human & Biotechnology, Information, Communication & Computing, Mobility & Production (autonomous driving, engine technology); Sustainable Systems
• Founded in 1841
• Excellent university specialized in Mozart studies and music in general. “Mozart is our inspiration, music our tradition, art our passion”
• 1,800 students (widely international)
• Over 40 artistic and educational courses ("Meisterklassen")
• Comprehensive training in the fields of music, as well as the performing and visual arts
- Founded in 1365, it became autonomous in 2004
- Europe’s largest school of medicine located in close vicinity of Europe’s largest hospital (Vienna General Hospital)
- Around 8,000 enrolled students, 3,600 scientific researchers
- 29 clinical departments and clinical institutes, and 12 specialized medical centres
- Ranking: Times Higher 2019: 201-250; Shanghai Ranking 2018 - Medical Technology: 25
- Strong and interrelated focus on research, education, and patient care (120,000 inpatient cases per year, 54,000 operations, 1,600 physicians)
2. Universities of Applied Sciences (UAS; “Fachhochschulen”)

- 21 UAS in Austria
 - Practice-oriented professional tertiary education; compared to the universities: less academic and theoretical
- Around 54,000 students are enrolled (8% of the age group 18-24); of them
 - 81% are Austrian citizens, 13% non-Austrian EU citizens and 6% third-country nationals
- Legal status
 - different kinds of legal entities under private law (private associations, business organisations, state governments (“Länder”), or private companies)
 - autonomy in terms of strategic orientation, study programmes, human resources, and internal disposition of public funding. Partial “price” autonomy: EU citizens pay 360 € per semester; TCNs pay full fees to refund all costs for the institution
• Relation to the Ministry of Education, Science and Research
 • Weak; relation is characterized by selling and buying
 • The Ministry announces a certain need for study programmes and study places (e.g. 3,000 study places for Informatics)
 • After the announcement the UASs deliver proposals
 • After evaluation the Ministry “buys” specific programmes and study places
 • In general: All study programmes have to be accredited by an independent state agency (AQ Austria)

• Example of a University of Applied Sciences
Founded 2001 as a private association ("Verein")
Continuously growing in terms of students and study programmes; 2018: 60 study programmes, 6,000 enrolled students
Focus on BA and MA study programmes, no PhD programmes
Most of the study programmes are in the field of applied life sciences, health, construction, and social work
Strong interaction with the city of Vienna, hospitals, and large construction companies.
3. Private Universities

• 14 private universities in Austria
 • Heterogeneous concerning content (music, art, tourism, medicine, law)

• Around 14,000 students are enrolled (2% of the age group 18-24); of them
 • 54% are Austrian citizens, 32% non-Austrian EU citizens, and 14% third-country nationals

• Legal status
 • different kinds of legal entities mainly under private law
 • enjoy full autonomy in all respects (strategic orientation, study programmes, human resources), as well as “price” autonomy (fees vary from 12,500 € to 363 € per semester)

• Relation to the Ministry of Education, Science and Research
 • Loose; Prohibition of federal funding; only quality assurance via AQ Austria
• Founded in 2003
• Transforming psychotherapy into psychotherapy science, based on an academic foundation
• In 2005 the Bachelor’s and Master’s programmes (and later PhD) in psychology and in psychotherapy were accredited, in 2015 furthermore programmes in medicine and law
• Small numbers of students guarantee a student-centred teaching
2 Non-university Research Institutes

1. Austrian Academy of Sciences (ÖAW)
 - Founded 1847
 - Assembly of the 90 full members of the Academy and a responsible agency of 28 research institutes
 - 1,700 employees dedicated to innovative basic research
 - Renowned in quantum physics and microbiological research
2 Research Institutes outside the Universities

2. Institute of Science and Technology Austria (IST Austria)
 • Founded 2006
 • PhD-awarding research institute in life sciences, physical sciences, mathematics, and computer science;
 • Around 900 employees
 • The campus provides a range of amenities and facilities that make the Institute an outstanding place to work and live.
One important applied research institute

Austrian Institute of Technology (AIT)

• Founded 1956
• Originally a research centre for nuclear power; after a referendum against nuclear power (1978) the research centre was transformed into a closed corporation ("GmbH");
• Around 1,300 employees
• AIT cooperates with industrial partners and provides new technologies, methods and tools.
• Focus on smart cities, battery technology, cyber security, bio sensors, and others
2. Finance
Austria is

- one of the wealthiest countries globally. The GDP is around 417 billion USD or 48,000 USD per capita.
- In comparison: The GDP of the UK is 2.580 billion USD or 39,000 USD per capita. If the UK would be as rich as Austria, the GDP would be 3.175 billion USD.
- a high tax country and around 43% of the GDP will flow into levies such as taxes and social transfers.
- the 43% (=179 billion USD) will be distributed by the federal government ("Bund"), the 9 federal states ("Länder") and the 2.100 local communities ("Gemeinden")
- the federal government is the most important political driver and distributes around half of the total state income (78,5 billion € ~ 86,4 billion USD).
1. Institutional public funding

- The federal budget for science, research, and tertiary education is around 4.8 billion € (~32.8 GBP if Austria were the UK); that means
- 6% of the total federal budget (78.5 billion €) or 1.2% of the GDP
- Main receivers are
 - Universities (3.3 billion €)
 - Universities of Applied Sciences (“Fachhochschulen”) (0.3 billion €)
 - Student grants (0.3 billion €)
 - Basic Research: Austrian Science Fund FWF (0.2 billion €)
 - Applied Research: Austrian Research Promotion Agency FFG (0.4 billion €)
 - Academy of Sciences and Institute of Science and Technology (0.2 billion €)
2. Direct public R&D funding: research premium

- A research premium may be claimed by companies for expenditures on in-house, contract research and experimental development. Its objective is to increase knowledge and develop new related applications. This encompasses basic research, applied research, and experimental development, covering the fields of life sciences, technologies, social studies, and the humanities.
- The research premium covers 14% of research spending in any given financial year, including research-related investments, wages and salaries, funding expenditures, and overhead costs.
- The research premium was increased from 12% to 14% in 2018. This was a strong incentive to increase R&D activities in firms or to attract new firms.
• One example
 • The Boehringer Ingelheim group is one of the world’s top 20 pharmaceutical companies. In early 2016, the company started a significant investment in biopharmaceutical production at its Vienna site.
 • “Our biopharmaceutical production in Vienna is currently being enlarged at a cost of € 700 million. The research subsidies played an important role in the decision.” Philipp von Lattorff, Country Managing Director, Boehringer Ingelheim RC
3. Private and public R&D funding: a synthesis

- The public funding of institutions and the research premium provide significant leverage to motivate private funding. Private and public funding together exceed 12.8 billion € or 3.19% of the GDP.
- Two thirds of the 12.8 billion come from firms (8.25 billion) and one third is public money to finance the research at universities, UASs ("Fachhochschulen"), research funds, and research institutes outside the universities.
- The R&D to GDP ratio of 3.19% puts Austria among the top countries in Europe and worldwide (second only to Sweden in the European Union, fifth behind Israel, South Korea, Japan, and Sweden in the OECD).
Austria can look back at a remarkable expansion of research and development, more than doubling its R&D expenditures since 1995.

Moreover, it offers outstanding conditions enabling intensified cooperation between science and business. Here Austria has also taken the lead in Europe following a major effort to catch up in the 1990s. See chart to the right.
3. OECD Review
• In 2018 the OECD published the results of a review process. They concluded:
 • Austria has achieved much in recent decades.
 • From 1998 to 2016, Austria showed the second highest increase in R&D intensity of all OECD countries, exceeded only by Korea.
 • Austrian science, for example in the field of quantum communication and information, has world renown. Vienna is a major biotech hub in Europe, as is Linz in mechatronics and Graz in automotive and production technologies. Austria is also home to a number of firms which are world leaders in certain technological fields and niche markets.
• the strengths and opportunities are
 • (General): Strong long-term economic performance, with high living standards
 • (Research): Excellent basic research and competitive (cross-disciplinary) funding (FWF in particular, FFG for applied research); innovative institutions (e.g. Institute for Science and Technology Austria; Universities of Applied Sciences)
 • (Innovation ecosystem): World-class conditions for the creation and upscaling of innovative firms; Rapid increase of R&D intensity across most industries and firm size classes
 • (International): Successful participation in the EU’s 7th Framework Programme, Horizon 2020, and European Research Council grant processes
• Threats or weaknesses are
 • (General): Loss of competitiveness in the context of a rapidly ageing population; Fragmentation of research and innovation policy
 • (Research): Difficulty in attracting and retaining highly-skilled personnel including researchers, with severe international competition for talent; Shortage of internationally visible research universities; University of Vienna should be as famous as Oxford or Cambridge
 • (Innovation ecosystem): Failure to create an ecosystem for business scale-up, with low levels of venture capital investment
4. My Advice for Austria
• Reflecting the OECD review recommendations and my personal knowledge, I would give the following advice

1. Develop a vision and give a clear political commitment from above
 • Austria is a country without any significant natural resources, but with bright people and with strong R&D institutions, which are prerequisites for a successful export-orientated economy. R&D is part of the attractiveness of the country.
 • Signals from above can change the country-specific mind-set. Austria has always been seen as a country of music, culture, and beautiful landscapes, but it should be seen as a strong innovator as well.
2. R&D institutions need a long-term perspective

- Investments into R&D need a long-term perspective. Institutions have to hire professors, build laboratories, and shift research questions, but this cannot be done within a few months.

- Therefore:
 - Do not change strategies in a short-term cycle. Stay stable, develop a strategy for Research, Technology and Innovation (RTI) which is scheduled for the years leading to 2030.
 - Provide financial planning security for Austria’s core research institutions (ÖAW, ISTA, AIT,...), research funding institutions (FWF, FFG) and the universities.
3. Bridging the gap between R&D institutions and the economy

• Funding initiatives to close the gap between universities and private enterprises constitute a major element in the Austrian success story

• Therefore

 • Support activities at the cutting edge between research and production. Bring together universities with private companies and the funding agency. Try to bring innovative ideas in certain disciplines (Chemistry, Physics, Material Science) into the production line.

 • Within the target negotiations, my ministry specifically required patents, license fees, spin-offs and strategies to bridge the gap between R&D and the economy; the third mission became an important field of activities of the universities.
4. Public money as leverage to activate private money

- Austria has a long-standing paternalistic tradition. The “deep state” is responsible for everything. I prefer another strategy. The state should set initiatives, should act with and not against the market, and stimulate PPP.
- Therefore
 - The research premium is a key incentive for companies in Austria to invest more in R&D and in riskier projects. Companies conducting research can claim 14% of their R&D expenditures for tax purposes. One public euro for research stimulates seven private euros.
 - Private donations to the Academy of Sciences, the Universities, and all other research institutions reduce the tax base. This form of tax deduction is important as well, but could be more popular than it is currently. We are still far removed from a German or US-American situation.
5. Autonomy and competition are key instruments

- In Austria – as well as in other countries and in the EU – many bureaucrats believe that they know which research topics are future relevant. They think disruptive innovations can be ordered. But: successful research is not a matter of a 5-year plan. Ideas going in that direction are misleading.

- Therefore:
 - Give research institutions the freedom to decide which research is relevant. The research institutions should have the freedom to invest research money independently. I trust in the wisdom of the professors, deans, and rectors.
 - Stay sceptical if indicators such as the number of articles, books, or invited lectures are seen as quality assurance, and try to stimulate risky research. To provide this → strengthen the autonomy of research institutions.
 - Stimulate competition as an important instrument when distributing money, staff, and other resources. Competition is the strongest instrument to ensure quality. Competition is the counterforce against self-satisfaction.
6. Think European

• The participation in European programmes and institutions is a strong instrument for quality improvement but also for modernizing research and saving money.

• Therefore

 • Rectors, deans, professors, and directors of research institutions are urged to apply for European funds, which fosters learning even in the case of rejection. Participation in the European Research Programmes (Horizon 2020, Horizon Europe, especially ERC) is extremely important. We are proud that Austria ranks among the top three countries in Europe, featuring a success rate of 17.1% (substantially above the EU average of 14.8%).

 • In some disciplines it makes no sense to invest in national infrastructure. Cooperation is the only meaningful alternative. The membership in institutions like CERN, ESA, ESO is extremely important, it provides access to new knowledge, methods, and technologies.
5. Final Word
• Austria
 • regrets the decision of the UK to leave the EU; the UK was/is an attractive place for our ERASMUS students and a strong partner in research
 • hopes that after BREXIT, the UK will be an associated member of Horizon Europe and a participating country of ERASMUS
 • supports all universities which intensify bilateral co-operation with British universities.
Q&A

Plenary, chaired by David Sweeney
The deadline for submitting a question to the policy panel is at 12:30pm. Questions can be submitted via www.menti.com

Type in code: 83 23 5
Increasing R&D investment to 2.4% of GDP

Helen Cross and Helen Pearce
26 September 2019
Increasing R&D intensity to 2.4% GDP

- The UK underinvests in research and development (R&D) (1.69% GDP in 2017) compared to its competitors.
- In the 2017 Industrial Strategy White Paper, the Government set an ambition for the UK to increase its total R&D expenditure to 2.4% of GDP by 2027.
In the 2016 Autumn Statement £4.7bn of additional funding for R&D was announced over the period 2017/18 to 2020/21 with a rising profile.

The 2017 Budget saw an additional £2.3bn added in 2021/22.

Much of this funding is being delivered through UKRI.
Spending Review: An evolving landscape

• Strong interest from No10 in science and research
• The need to remake the case for R&D across Government
• Continued push towards 2.4% target

Spending Round September 2019:

‘The government is committed to increasing levels of research and development (R&D) to at least 2.4 per cent of GDP by 2027. In the autumn, the government will set out plans to significantly boost public R&D funding, provide greater long-term certainty to the scientific community, and accelerate its ambition to reach 2.4 per cent of GDP.’
Why is the 2.4% target important?

We should acknowledge that 2.4% of GDP is an input measure – what will it deliver in terms of outcomes?

Evidence suggests:

- There is significant national and international evidence that shows public investment in R&D achieves high social rates of return, of around 20% per annum
- It attracts substantial private investment in R&D from within the UK and overseas, with every £1 of public spend leveraging about £1.40 of private spend
- That on average £1 of public R&D investment generates around £7 of net benefit to the UK
Our biggest international partners have ambitious R&D plans
The 2.4% ambition is only achievable with an uplift in both public and private funding.
Our approach

We are considering how to invest across six key foundations: ideas, people, infrastructure, business environment, place, and international, to harness the potential of our world leading science, research and innovation, and deliver transformational benefits for people across the UK and around the world.
<table>
<thead>
<tr>
<th>Workshop</th>
<th>Topics explored</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business environment</td>
<td>Supporting R&D-intensive sectors; regulation; tax incentives; absorptive capacity</td>
</tr>
<tr>
<td>Talent</td>
<td>Talent pipeline; immigration; entrepreneurship; diversity and inclusion</td>
</tr>
<tr>
<td>Maximising impact</td>
<td>Incentives for impact; leverage; commercialisation; investment capital</td>
</tr>
<tr>
<td>International dimensions</td>
<td>Attracting international talent; partnerships and collaboration; investment</td>
</tr>
<tr>
<td>Historical lessons and international comparisons</td>
<td>Historical lessons from UK; lessons from other countries</td>
</tr>
<tr>
<td>Entrepreneurs, innovators, investors</td>
<td>Finance and tax systems; regulation; skills; obstacles and opportunities</td>
</tr>
<tr>
<td>Place</td>
<td>Developing local R&D excellence, regional R&D investment.</td>
</tr>
</tbody>
</table>
UKRI’s emerging priorities - ideas

We want to build on the UK’s role as a global leader in science, research and innovation, and:

- **Fund the highest quality research** to explore the questions that will yield the transformational changes of tomorrow
- **Invest in cross-cutting technologies** that have the potential to transform the way we do business, support our national security and live our lives
- **Ensure the sustainability of our research base across all disciplines**, with increased investment in excellent university research (QR)
UKRI’s emerging priorities - people

In a 2.4% investment scenario we would propose to significantly expand research capacity in the UK, funding high performing individuals, teams and institutions across the country:

- Open up our doctoral programmes to fund the best and brightest from across the world, and look to double the number of doctoral students we fund
- Build upon the Future Leaders Fellowships programme, increasing the length and intensity of funding
- Work to create a new paradigm of careers that are mobile between sectors and disciplines
- Actively work with partners to enable and expand technical and vocational routes into and through research and innovation careers

<table>
<thead>
<tr>
<th>Career Stage</th>
<th>TRAINING</th>
<th>CONSOLIDATION</th>
<th>EXPLORATION</th>
<th>PROGRESSION</th>
<th>INDEPENDENCE</th>
<th>LEADERSHIP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Acquisition of knowledge, skills and competences, technical and transferable, through doctoral research.</td>
<td>Consolidation of research skills and confirmation of research as personal career path.</td>
<td>Exploration of personal capacity and aptitude for independence.</td>
<td>Leading independent research plans and establishment of research leadership.</td>
<td>Leadership and management of own programme, and / or team and resources.</td>
<td>Setting strategic direction, and / or leadership and management of multiple programmes, and / or teams.</td>
</tr>
<tr>
<td>Aim</td>
<td>To train people in the skills necessary for a research career.</td>
<td>Support people with leadership potential to consolidate their skills and explore their future potential.</td>
<td>Support transition to independence/establishment. Attract/support/retain outstanding talent. Develop leadership skills.</td>
<td></td>
<td></td>
<td>Support research leaders.</td>
</tr>
<tr>
<td>2018-19 Talent Allocations</td>
<td>PhDs</td>
<td>KTPs</td>
<td>Innovation Placements</td>
<td>Future Leaders Fellowships</td>
<td>National Academies Allocations</td>
<td>National Academies Allocations</td>
</tr>
</tbody>
</table>
UKRI’s emerging priorities - infrastructure

We want to:

• Ensure our existing infrastructure is fit for purpose and competitive

• Create step-changes in capability, whilst increasing capacity

• Develop our national e-infrastructure capacity

UKRI’s infrastructure roadmap programme will identify opportunities for new cutting-edge research and innovation facilities that would address strategic gaps in the UK’s capacity and capability.
UKRI’s emerging priorities – business environment

We want to:

• Improve access to finance for innovative businesses, with innovation grants and loans increasing

• Strengthen our support for knowledge exchange, delivering economic impact from research and building stronger links between businesses and researchers

• Increase our portfolio of challenge-led and interdisciplinary research programmes, such as through the Industrial Strategy Challenge Fund

• Expand our portfolio of catalysts
UKRI’s emerging priorities – place

We aim to:

• Ramp up the Strength in Places Fund, supporting more of the high-quality, locally-focused projects identified in each wave and potentially funding bigger projects across the UK

• Drive forward primary research around the role of research and innovation in supporting local growth and reducing regional disparities

• Build UKRI’s analytical capability to understand local / regional research and innovation strengths and opportunities to inform our future approach to investment
We propose to support partnerships with other scientific nations in pursuit of joint scientific objectives, through:

- The **Fund for International Collaboration** to support strategic global partnerships with leading R&D nations
- Sustaining our investment in ODA programmes to generate new solutions to development challenges and generate even greater development impact
UKRI cannot deliver 2.4% alone

To deliver the transformational benefits of investing further in R&D will require a coordinated effort across the whole of government:
Role for universities

• Delivering high quality research
• Investing in people and skills
• Hosting high quality infrastructure
• Collaborating with business
• Providing civic and thought leadership
…and more?
Thank you
Q&A

Plenary, chaired by Steven Hill
Research England Director of Research

#REEngage19
Save the date

Our next Engagement Forum will be on 26 March 2020

More details to follow
Policy Panel Discussion

Chair:
• **Alice Frost**, Research England Director of Knowledge Exchange

Panel:
• **Dr Steven Hill**, Research England Director of Research
• **Emma Lindsell**, UK Research and Innovation Associate Director of Strategy
• **Dr Phil Clare**, Research England Council member and Associate Director of Research Services, University of Oxford
• **Professor Maria Delgado**, Council member and Professor and Director of Research, Royal Central School of Speech and Drama

#REEngage19
Marketplace

Please make your way to the Conservatory
Save the date

Our next Engagement Forum will be on 26 March 2020

More details to follow